Lecția 3: Prejudecăți

Creează un model de învățare automată care clasifică imagini și explorează modul în care un set limitat de date poate duce la prejudecăți și părtiniri.

Obiective de învățare

  • Să descrie impactul datelor asupra acurateței unui model de învățare automată (model ML)

  • Să explice necesitatea atât a datelor de antrenament, cât și a datelor de testare

  • Să explice cum sunt influențate de prejudecăți predicțiile generate de un model ML

Cuvinte-cheie

Inteligență artificială (AI), învățare automată (ML), învățare supravegheată, clasificare, date de antrenament, date de testare, acuratețe, prejudecată, prejudecată încorporată în date, prejudecată socială

Structura lecției

  • Cele trei tipuri diferite de învățare automată

  • Aplicație AI pentru supermarket

  • Antrenarea unui model

  • Prejudecată (non-imparțialitate)

  • Model de orar al elevilor

  • Combaterea prejudecăților

Prezentarea lecției

Descarcă resursele lecției

Pentru a accesa resursele lecției, te rugăm mai întâi să te autentifici în cont sau să îți creezi un cont nou gratuit.
Îți vom adresa apoi câteva întrebări pentru a înțelege mai bine cum vei folosi resursele Experience AI.